

PTFE Lined Rubber Expansion Joints

Series 231/ET. The new and improved Series 231/ET will complement the existing Series 251/ET expansion joint. This new molded product has been completely re-engineered to provide improved strength, flexibility and movement capabilities. Manufactured utilizing tire cord industry technology, the Series 231/ET combines woven polyester tire cord into a fabric matrix and bonded with a EPDM elastomer that is reinforced with metal and bonded to a PTFE liner to create a product with greater operating performance. Note: The PTFE liner extends to the bolt circle of the bottom of bolt holes.

Greater Movements with a Lower/Wider Arch Profile. The movements for the Series 231/ET exceed the specification of the Fluid Sealing Association's, Rubber Expansion Joint Division Technical Handbook (7.3 Edition), Table VI. Due to a new and improved lower, wider profile arch, more axial compression and extension coupled with lateral and angular movements can be obtained without increasing the face-to-face requirements. For greater movements based on re-engineering and new product construction for highly corrosive piping installations, specify the Series 231/ET PTFE lined expansion joints.

Chemical Service Capability at Minimal Cost. Expensive, exotic metal expansion joint for low temperature service can be replaced with the Series 231/ET PTFE lined expansion joints. Engineered to operate up to 225 PSIG and 250°F, the Series 231/ET can be specified for a wide range of piping system requirements. Our standard stock is furnished with an exterior EPDM cover. Compared to metal, plastic or other rubberbacked competitive products, you will invest less and have access to in-stock availability with the high quality Series 231/ET.

Specifications Met. has assigned conservative pressure ratings to the Series 231/ ET PTFE lined rubber expansion joints. The ratings, however, meet the requirements of the Fluid Sealing Association's, Rubber Expansion Joint Division Technical Handbook (7.3 Edition). Series C. The pressure ratings for the Series 231/ET PTFE lined rubber expansion joints have been fully tested and are based on a minimum 4 to 1 safety factor. For pressure protection with confidence, specify the Series 231/ET.

Prevents Electrolysis and Electrolytic Action. In Chemical applications when metallic expansion joints are used, they are generally of a metal dissimilar from the pipeline. This may create an electrolytic galvanic action that could be destructive to the connector equipment or piping system. The use of the rubber-backed 231/ET PTFE lined expansion joints prevents this potential hazard. Additionally, our 231/ET expansion joints are non-conductive and eliminate the metal-to-metal contact at the flange face thus stopping electrolysis.

Absorbs Vibration

Noise

Shock. The Series 231 /ET PTFE lined rubber expansion joints are a replacement for "sound transmitting" metallic expansion joints. Sound loses energy traveling axially through an expansion joint. Water hammer, pumping impulses, water-borne noises and other forms of strain-stress-shock are cushioned and absorbed by the PTFE lined/rubber elastomer expansion joint, not related to piping. Install the Series 231/ET in a system to reduce vibration transmission when the piping section beyond the expansion joint is anchored or sufficiently rigid. For quiet, stress-free systems specify the Series 231/ET.

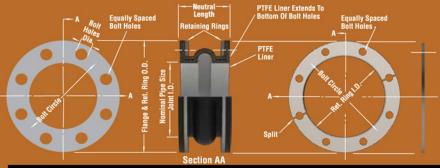
Distributed By:

info@itesa-chile.com ventas@itesa-chile.com

www.itesa-chile.com

Table 1: Available Styles • Design Descriptions • I.D. Sizes

#231/ET — Standard Single-Arch, Spool-Type Joint (See Table 2)


#251/ET — Standard Single-Arch, Spool-Type Joint

1"-36"

1"-48"

Protecting Piping and Equipment Systems from Stress/Motion

PTFE Lined Rubber Expansion Joints

Table	2: Siz	es • <u>1</u>	Novem	ents •	Section Pressul		eights •	• Drillin	g									
EXPANSION JOINT SIZE Nom. I.D. x Inch / (mm) ¹		NEUTRAL LENGTH Inch / (mm)		231/ET Movement Capability: From Neutral Position						Operating Conditions 5 Weights in lbs / (kgs) 6			Flange Dimensions and Drilling ⁸					
				Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular Deflection ² Degrees	Torsional Rotation ³ Degrees	Thrust Factor ⁴ In2 / (cm2)	Positive PSIG / (Bar)	Vacuum Inches of Hg / (mm of Hg)	Joint Assembly	Retaining Ring Set	Control Unit 7 Assembly	O.D. of Exp. Joint / Ring Inch / (mm)	Bolt Circle Inch /(mm)	Number of Holes	Size of Holes Inch / (mm)
1.5	(40)	6	(150)	1.25 (32)	0.625 (16)	0.625 (16)	28.0°		7.03 (45)	225 (15.5)	30 (762)	1. 5 (0.7)	2.5 (1.1)	2.3 (1.0)	5.0 (127.0)	3.88 (98.6)	4	0.625 (15.88)
2	(50)						25.0°		12.56 (81)	225 (15.5)	30 (762)	2.0 (0.9)	4.0 (1.8)	2.8 (1.3)	6.0 (152.4)	4.75 (120.65)	4	0.750 (19.05)
2.5	(65)						20.2°		15.82 (102)	225 (15.5)	30 (762)	2.5 (1.2)	4.5 (2.0)	2.8 (1.3)	7.0 (177.8)	5.50 (139.7)	4	0.750 (19.05)
3	(80)						18.0°		19.63 (127)	225 (15.5)	30 (762)	3.0 (1.4)	5.5 (2.5)	2.8 (1.3)	7.5 (190.5)	6.00 (152.4)	4	0.750 (19.05)
4	(100)						14.2°		28.27 (182)	225 (15.5)	30 (762)	4.0 (1.8)	8.0 (3.6)	2.8 (1.3)	9.0 (228.6)	7.50 (190.5)	8	0.750 (19.05)
5	(125)						13.0°		39.26 (253)	225 (15.5)	30 (762)	5.0 (2.3)	8.5 (3.9)	4.0 (1.8)	10.0 (254.0)	8.50 (215.9)	8	0.875 (22.23)
6	(150)						12.2°		50.27 (324)	225 (15.5)	30 (762)	7.0 (3.2)	9.5 (4.3)	4.0 (1.8)	11.0 (279.4)	9.50 (241.3)	8	0.875 (22.23)
8	(200)						12.0°		78.54 (507)	210 (14.5)	30 (762)	11.0 (5.0)	14.5 (6.6)	8.0 (3.6)	13.5 (342.9)	11. 75 (298.4)	8	0.875 (22.23)
10	(250)	8	(200)	2.0 (50)	1.0 (25)	1.0 (25)	11.9°	1°	113.1 (730)	210 (14.5)	30 (762)	19.0 (8.6)	1 7.0 (7.7)	10.0 (4.5)	16.0 (406.4)	14.25 (362.0)	12	1.000 (25.40)
12	(300)						11.3°		1 53.94 (993)	210 (14.5)	30 (762)	29.0 (13.2)	24.5 (11.0)	10.0 (4.5)	19.0 (482.6)	17.00 (431.8)	12	1.000 (25.40)
14	(350)						11.5°		201.06 (1297)	1 50 (10.0)	30 (762)	38.0 (17.2)	27.0 (12.3)	12.0 (5.4)	21.0 (533.4)	18.75 (476.3)	12	1.125 (28.58)
16	(400)						10.1°		254.47 (1642)	1 50 (10.0)	30 (762)	44.0 (20.0)	33.5 (15.2)	1 5.0 (6.8)	23.5 (596.9)	21.25 (539.8)	16	1.125 (28.58)
18	(450)						8.9°		314.16 (2027)	1 50 (10.0)	30 (762)	49.0 (22.2)	34.0 (15.5)	16.5 (7.2)	25.0 (635.0)	22.75 (577.9)	16	1.250 (31.75)
20	(500)						8.1°		380.13 (2452)	1 50 (10.0)	30 (762)	54.0 (24.5)	38.0 (17.3)	16.5 (7.2)	27.5 (698.5)	25.00 (635.0)	20	1.250 (31.75)
24	(600)	10	(250)	3.0 (75)	1.5 (38)	1.5 (38)	9.0°		530.93 (3425)	110 (7.5)	28 (711)	60.0 (27.2)	48.0 (21.8)	20.0 (9.0)	32.0 (812.8)	29.50 (749.3)	20	1. 375 (34.93)
30	(750)						7.5°		838.65 (5410)	1 00 (7.0)	28 (711)	88.0 (44.0)	63.0 (28.6)	29.5 (13.3)	38.8 (984.3)	36.00 (914.4)	28	1. 375 (34.93)
36	(900)						6.7°		11 69.16 (7543)	1 00 (7.0)	28 (711)	112.0 (50.8)	76.0 (34.5)	43.0 (19.5)	46.0 (1168.4)	42.75 (1085.9)	32	1.625 (41.28)

- The degree of angular movement is based on the maximum rated extension.
- PTFE liner extends to bottom of bolt holes.
 The degree of angular movement is based of Jossianal movement is passed.
- Torsional movement is expressed when the expansion joint is a neutral length.
 To determine "end thrust", multiply thrust factor by operating pressure of system.
 Pressure rating is based on 194°F operating temperature. At higher temperature the pressure rating is slightly reduced.
- Weights are approximate.
- Control unit weight consists of one rod, four washers, three nuts and two control rod plates. Multiply number of control units needed for application (as specified in the Fluid Sealing Association Technical Handbook) to determine correct weights.
- 8. Dimensions shown are in accordance with 125/150# standards of ANSI B-16.1, B-16.24, B-16.5; AWWA C-207 Table 1 and 2 Class D.

Series 231/ET products are designed to absorb different movements concurrently.

Rotation about the Centerline (Twist)

Distributed By:

info@itesa-chile.com ventas@itesa-chile.com

www.itesa-chile.com